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ABSTRACT

Variational expressions of the admittance c¢f the uniformly fed
rectangular aperture covered with homogeneous material are derived.

The electric field inside the waveguide is assumed to be & dominant
mode (TEp)) plus the first higher order symmetrical mode (TEO5). For
the aperture sizes of the pyramidal and H-plane horns, the contribu-
tion of the TE03 mcde to the aperture admittance is shown to be
negligible.

The admittance of a uniformly fed aperture is assumed to approxi-
mate the mouth admittances of the pyramidal and H-plane horns. Calcu-
lations of the admittance (or reflection coefficients) were obtained
for the rectangular mouth sizes of pyramidal and H-plane horns under
free-space conditions and with slabs of Plexiglas and quartz covers.
Measurements were obtained for a number of slab thicknesses of Plexiglas
and quartz.

Good agreement in terms of reflection coefficients was obtained
between the measured and calculated data for the pyramidal horn. The
agreement between measured and calculated reflection coefficients for
the H-plane horns was not as good as the agreement obtained for the
pyramidal horn. The smaller flare angle (9°) horn data, however, is
shown to agree better with the calculations than the larger flare angle
(18°) horn data, particularly in megnitudes. This agrees with the fact
that in theory as the flare angles approach zero with fixed mouth size

the H-pléne sectoral horn would approach a uniform waveguide of mouth

i1
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size cross section; and hence, the aperture admittance would be
determined by the expressions derived for the uniformly fed aperture
assumption.

The results indicate that the expressions for the admittance of a
uniformly fed rectangular aperture can be used to approximate the mouth
admittances of the pyramidal and H-plane horn. The accuracy of this
approximation is similar to that obtained with rectangular waveguides
opening onto small ground plane covered with slabs of material.

As the larger dimension in the expression for the admittance of
a uniformly fed rectangular apcrture approaches infinity, the aperture
admittance is shown to approach the admittance of a parallel-plate

waveguide covered with a slab of homogeneous material.

i1t
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CHAPTER I
INTRODUCTION

The electromagnetic horn is used quite extensively in spacecraft
applications for pattera considerations and plasma diagnostics. Often
horn antennas are mounted on the metallic body of a spacecraft in such
a manner that the horn mouth is flush with the body. Generally, the
spacecraft is covered with thick layers of dielectric ablative material
for protecting the internal instrumenta“i~n from the intense neat during
reentry into the earth's atmosphere at hypersonic velocities. Thia
excessive heat will cause the properties of the dielectric material to
change and, therefore, cause the admittance characteristics of the horn
antenna tc¢ change.

The mouth admittance of horns have not been successfully treated
theoretically. Experimentally, the mouth admittance for horns are
determined from measurements in the feeding uniform waveguide [1,2].
Equations describing the wave admittance in the sectoral horn are given
by Silver [l_] and Wolff [2_] These equations can be used to determine
the reflection coefficient at any point in the sectoral horn if the
admittance is known at that point.

The purpose of this paper is to determine an approxinate expression
for the mouth admittance of the H-plane sectoral horn and the pyramidal
horn covered with slabs of homogeneous material. The mouth admittances
of these horns are assumed to be aprroximated by the admittance of a

uniformly fed rectangular aperture.
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Variational expressions for the admittance of a uniformly fed
rcctangular aperturc covered with slabs of homogeneous material have
been derived [3-?]. In papers by Galejs [B-Q], a trial field in the
aperture was assumed to be a superposition of a sine wave and a shifted
cosine wave. This solution is also variational, but the infinite
ground-plane structure was approximated by a large waveguide. Many
authors assumed only the TE5; mode as a trial field at the aperture
which is terminated in a flat infinite ground plane. The possibilities
of contribution’ Lo the aperture admittance caused by a higher order
0dd symaetrical mode (TEOB) have also been investigated.[Q,l@]. If the
admittance c¢f a uniformly fed aperture can be assumed to approximate the
mouth admit{tance of a horn, a technique by which the properties of ‘.e
dielectric material covering these horns can be determined. Hence,
these horns can be used as a diagnostic tool for making parametric
studies.

A complete derivation of the admittance of a uniformly fed
rectangular aperture, terminated in a flat ground plane coated with a
nomogeneous dielectric material, is presented. In addition to the TEg)
mod=, & higher order symmetric mode (Ton) is assumed in the aperture.
The contribution to the admittan~e caused by this higher order mode is
shown to be negligible for the apertures considered. Therefore, the
variational solution obtained by assuming the TEg; mode only is used
for the mouth admittance of the sectoral horn and pyramidal horn.

The mouth admittance of two H-plane sectoral horns and one pyramidal
horn are investigated with and without a low-loss dielectric covering

a ground plsne. Two H-plane sectoral horns with different flare angles
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(9° and 18°) and fixed mouth size (1.016 X 6.248 cm) were chosen to
demonstrate how well the theoretical computations can better approx.-

mate the measured admittance values (or reflection coefficients) by

decreasing the flare angle.
The theory for the admittance of a uniformly fed rectangular aper-

ture is given first. The pyramidal horn and the H-plane sectoral horns
are discussed separately. TIn the Appendix, the admittance of the
rectangular aperture is shown to approach the admittance of a parallel

plate waveguide as the large dimension of the rectangular aperture

becomes infinite.
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CHAPTER II
THEORY

Since the mouth admittance of a sectoral horn is assumed to be
approximated by the admittance of a uniformly fed rectangular aperture,
the derivation of the latter admittance is given here for completeness
Ell

The geometry of the problem which is divided into three regions
is shown in figure 1. A rectangular waveguide is terminated in a flat
ground plane of infinite extent in both the x- and y-direction. A slab
of homogeneous dielectric material of thickness d is assumed to cover
the ground plane as well as the open-end waveguide.

In region I, which is the region inside the waveguide, a TEg;
mode 1s assumed to be incident upon the aperture from the left. The
discontinuity at z = 0 excites both propagating and nonpropagating
reflected modes. However, since the TEj; mode is assumed to be
incident upon the aperture, only a reflected TEq, propagatirg mode
is excited. Higher order nonpropsgating modes (evanescent modes) are
excited, but because of the symmetry, only odd modes exist. For this
problem, only the TE03 evanescent mode is assumed to be present.
Other higher order terms could be obtained by applying the same pro-
cedure. From the foregoing assumptions and with eJ“m' time dependence

assumed, the fields in iegion I (waveguide) are written



;

Region II

Region III

Region I

Figure 1. - Rectangular waveguide covered with a slab of homogeneous
materisl of infinite extent in the x and y directions.
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ExI(Y,Z) = Eo(e-jkz’Olz + I‘e'jkz,OJ-z)cos 115)!_ + R cos _S_%V_ eJKz,032 R

EyI(y)z) =0
HxI(Y:Z) =0

HYI(Y: z) = Yo]_Eo(e

where

~J%z,012 _ [ ¥z,017

z,01 ~

03 ~

y

COS ~= =~
) b

/

The fields in the dielectric slab (region II) are expressed in

terms of the electric and magnetic vector potential, A* and A,

respectively; that is, D = -§ x A*

and B =% X A. From Maxwell's

equations, the total transverse field components are determined from

the superposition of TE and T modes to the z-axis. These trans-

verse fields are given as

6
f(‘l)
Y03R cos BT’W e'jkz’OSj
\
P (2)
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2 *II
1 d Az 1 aAz

I1
) = - —
H.V (52 Jwug€y  dyoz ug Ox y

II
The potentials A; and AZII must also satisfy the scalar wave

equations

$QH+&%QQH A
) (1)

IT 2 II
V2Az + “’“OelAz =0 J

Partial solutions to the wave equation are expressed as [b,l%]

»11 ® clI
k‘x’l‘y’ )

A

A similar set of equations are written for free space (region III)
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By yz) = o = oo Wz
(6)
#I1I1 III >
HXIII<X)Y:Z) = 1 aZAZ + -]'; aAz
Jorn€y Xz g dy
2, %111 III
I o) = — FhT 1 oAy
iy e Joug€g  dyoz g Ox
J
where
A;III o GIII(kx:ky:Z)
= 1 -J -Jkyy
- = o g e JlxX o=Jky, dk, dk, (7)
A, FIII(IS(’ky: z)
are partial solutions to the wave equations
\
PaII 4 02y e a2 TII . o
) (8)
P, 4 ugeon, =0

By applying the boundary conditions at 2z = 4, a relationship
vetween G and GXI and FII and FIII is determined. At s =d

tangential E and H are continuous across the boundary; therefore,
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ExII(x:y,d) = ExIII(x;Y:d)

E 1H(x,y,4) = E,1(x,y,4)

HXII(x,y,d) = HxIII(x,y,d)

HyII(x:Y:d) = HyIII(x:Y:d) y

The substitution of equations (3) and (4) and (6) and (7) into

equation (9) yields

?

FLL (ke k@)= FIII(ky X p0d) A
Flkz)| g @ gk ,2)
az z=d ) ::-6 dz z=d
6T (i ,d) = =2 6700k ,0)
0
6 (kekyoz) | g 46T (ke 02)
dz G dz
=d z=d

(9)

(10)

However, in region III the plane wave propagates in outward direction

IIIz

only; therefore, Fl'l(ky,ky,2) = M(ky,ky;kz)e? 2 2 and

GIII(kx,ky:z) = N(kx:ky:kz)e‘jkznxz where kan = \Imz“OeO‘ (kxe + kya)-

Hence, equation (10) becomes

FII(kx;ky; a) = FIII(kx:ky:d)

II
dF (ky,ky»2) €, III III
k:zfx -Ek F (kokya)

z=d

(11)
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M ligrkysd) = g 6T g kys0) (11)
acti(x,,ko2)| . &, IILIII
| 9k LTk, kp00)
Defining
£(z) = FII(kfx:ky:z) 7
FI (1 5y, 0)
) (12)
(z) = GII(kak?L’Z)
S T (ke a)

Substituting equation (5) into (4) yields

2,11
a-G (kx:kyyz) + ((Deﬂoel" &2 - HE)GII(IS(’ky’z) =0 )

d2
a°F (kx: »2)
) gy - 2 - R RE) = 0

Dividing equation (13) br GHI(kx,ky,d) and FII(kx,ky,d), respec-

tively, and making u xquation (12), equation (13) becomes

a%g(z) + k1T g(z) = O )
dz2
(%)

2
gd-%z—) + kzII f(z) =0

where

II_J " o x2.k2
X, @Puyty - K k,

X
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Solutions of equations (14) are of the form

II I
£(z) = Ae Tz 2 4 pi¥z 2

? (15)

g(z) = Ce"jszz + De"jkzj:]:z J

From equations (11), the values of f£(z), g(z), f£'(z), and g'(z)

at z =4 are given as

\
f(z) yod 1
df(z) =33 x, TIT
dz  Iz=q €0
} (16)
| =2
S(Z)le o
dg(z) -1 & IIT
A dz |z=4 J € 2 /

¥ By using these boundary conditions, the coefficients A, B, C, and D
3‘ are determined. Once these coefficients are known, the initial condi-

tions £(0), £'(0), g(0), and g'(0) are determined. Hence,

€, k III A
£(0) = cos kzIId + 3 -% kz sin kzIId
z

£'(0) = k,IT sin kzIId -3 ;i k,'TT cos x,TTa
0
) (a7)

III

€ k

g(0) = 2(cos kznd + J =2 8in kznd)
| % k, 11

U N
b e TN,

g'(0) = ;%(kzII.sin keIl - 3k, IIT cos k,T14) |

J

ERR

ALY Sl



where
\
k1T = * \j‘”e“oel - (k2 + K2) K2 + k2 < aPuge)
k1T = 25 \ig2 + K2 - aRuoey k2 + Ig2 > aRugey
 18)
K, 10 o \fkg? - (k2 + k2) ? + 2 <ke? = Pugey
i TIT = g\[k 2 o k2 - ko2 k2 + 12 > kg )

The signs chosen on the radicals of kzIII

in equation (18) assure
proper behavior of the function at z = «; that is, to satisfy the
radiation condition.

The foregoing discussion is necessary in determining the aperture
admittance of the rectangular operture. Since tangential E and H
are continuous across the boundary 2z = O, the reaction integral Ell,lZJ

is also continuous, i.e.,

af2 rbv/2 I I
Is= »Y»0 »Y,0)dx
coj2 J s Ex (%,¥,0)H, " (x,y,0)dx dy
8/2 b2 g II
= (x,y,0 »Y,0)dx 1
f-a/z _b/QEx X,¥50)Hy " (x,y,0)dx dy (19)

First, the reaction integral due to the fields inside the waveguide is
considered by substituting equations (1) into equation (19) and per-

forming the integration. The reaction integral becomes
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The aperture admittance is defined as

Y, {1-r) (21)

=Y
P 0l (3 4

equation (20) is written as

S QU S +__.._._5Y°3 R? (22)
ap &b Eg“(1 + T) Eo(1 + T)

Next, the reaction int.:gral due to the fields in region IT at z = 0

caf2  ;bf2

II 11
-a./2 J-‘b/2 Ex (x,y,O)Hy (x,y,0)dx dy (23)

I=
The limits of integration can be extended to infinity, since the
EXII(x,y,O) is zero outside the aperture. Then, by applying Parseval's

Theorem, equation (23) becomes

1
(2x)

I =

5 J ‘LJ ) B (ks Ky Oy Ty Ky, 0 )iy ke, (24)

where Exn and }.(yn represent the double rourier transform of E,
and Hy, respectively. In region II, H, and Hy, Ex and Ey are

written as

i lx,,0) = Ly [ BT gkg,00e7te oo i ag

————d

Hyn(x,y,O) — f“fu iyn(H:KJ,O)e'kax e -JkyY dk, dk, ' (25)

(2x)2
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B L(x,5,0) = ?5%7? f 3 f ) B, iy ke, 0)e~Tkn o-liyy diy diy , (25)

LR~ R

and from equations (3) and (5)

II IT
E (x,y,O) = "2-;)—— f f [—ﬁ G (k ky ,0) h
+ J('Jkge() dFII(lS(:ky:Z)l ]e-jkxx e-jkyy dlk, dk.y
Do dz 2=0
r\<26>

EyII(x,y,O)-———- f j [ k"GH(kx,ky,O)
, (aky) wll(kx,ky,z)} -]
z=0

-vj kxx -J kyy dkx
e e
Jorg€y dz = dksj

or in terms of g(0), f£'(0) and GHI(kx,ky,d), FIII(kx;

ky,d)

3Y50) = e L g(0)6  (x ,x_,4)
Byl0) = L /wj[ 8(0)e (i

Iy o eITI ~JKeX _=Jky
-mf(O)F (kx,ky,d)]e e VY diey aky

 (27)
By(x,y,0) = —"—g f ] f ] [ = 80006 ™ (i kypa)
- 335'__ £ (o)FIH(l&,%, :I ~Jhyx o ~Jkyy dicy dky,
o€y

J

RN W A rg——— s .
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Equating equations (25) and (27), the double Fourier transform of

ExII and Ey]:I are determined
= II k )
(1&:]&:0) = —e-f" g(O)GIII(IS(:kyyd)
- Jkx ' IIT
e ¢ OFTgka)
) (28)

= IT

By (kyoky»0) ki‘ g(0)cT T (i, ey pd)

__1’1_ £! (O)FIII(k ,k ,d)

Joug€y

The fields at 2z = O from inside the guide

af2 [bf2 = : 3
' = ~JkyX o-Jkyy
}:L, = E5(1 + T') cos Y 4R cos 2
° ® ° > (29)
| L(x,y,0) = J J b/ B, (ky,ky;0)e ~Jhxx o =IKYY qiy ake

By vl = o )2 -af2 Y v/ y y

= 0
Therefore,
EXI(IS(,ky,O) = CO(ISC)[:EO(J‘ + P)Cl(ky) + RC}(ky) )
- EG(1 + r)co(k,a[cl(ky) + GC3(ky)

=) (30)
“ | E-YI(kx’kY’o) =0
J

M — o ————
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where
__R
Eo(l +T)
a/2 a sin ——
Co(ky ) =f edkxX gy = 2
~a/ kxa
2
rb/2 2nb cos ELb
Cl(ky) =k/ &Y cos %? dy = g
b/2 72 - (I%b)2
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(31)

Since the tangential components of E, and Ey are continuous across

the boundary 2z = O, the double Fourier transforms are also continuous;

therefore,

EXI(IS(,ky:O) = EXII(kx)ky)o) = EXII('kx."kyao)T

>

B, M (ieys ky0) )

B, (1, Xy50)

Substitution of equations (28) and (30) into (32) gives

kywhp€y 4

~
FIII(kx:ky’d) = - kx2+k;éf'(0) Co(kx) Eo(l + F)Cl(lS') + RCB(ngﬂ

GIII(kx,ky,d) = - kxgk:,el . 8(-10) co(l&)[ﬁ‘.o(l + T)cy (k) + RC5(lS,ﬂ
| y

(32)

) (33)
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<OI‘
kxw“o 1 1 3I
FHIL (K, kyyd) = - 12 PO E, (ky,kys0)
(34)
III _ . kyel =1y k.,
G (kyokypd) = =3 .y g(o) EIkysky»0)
From equations (3), (5), (12), and (25)
By (kK 0) = - —k":— g' (0)6TH (k5K ) + 3 -t—"a £(0)F (ks k5 4)
o (35)
and from (34)
E IIY k 2 '(0)
= II o BYoko ) Ky e to)
Hy (ISc’ky,O) = -] 1&2 + kya {<k0> <k0g(0))
. Ky \2 €1 f(O)) (36)
+<k_o> <\ £'(0)

Therefore, from equation (24)

:; NS oy B Yoo (ﬁ)E (g'(o)>
%, 1= TE;SE \/_w o kx2 + kyz ko/ \kog(0)

f(O)) (37)
(ko) £'{

and from (22) and (30)

2Y oko? = Co(ky)Colky)
- - ;;%’%).2. f f e [1(15,)01(15,) + 26C; (k. )C3 (k)

2, ., 2 (0) 2
(38)

i l’"

——p— —— N UOSN MW S N e poeg———



‘j"?". e e LS

Ei

R e RIOE PN T

.3

g .+ T
R o AT

-

B

18

rewriting equation (38) as

Yoo = Y ¥ 26Y) 5+ (Y33 + YOB)G (39)
or
yap=¥.m=3u+ggfu+(51+¥_ozz (40)
Y01 Yo1 Yo \Yo1 Yo
where

 2Ygko? 2,
Yom = ~d 0%0 f-wf Colky )Co(ky )T,y (ky)cm(ky) - (Ekﬁ) (kog((%)))

i ab(21t)2

Kx 2eq kof(O) _
(ko €0 fo(o) }dkx dky, (m = 11,13,33) (41)

The normalized aperture admittance is sta.tiona.xy[BJ; therefore,

dy ap

% 0 (%2)
Hence,
G = 20l (43)
Y33, Yo3
Yop Yo1

Substituting equation (43) into (40)

2
17 \Yor Y13
Yap = - =¥17 - (k)
&P Yo Y33 . Yo 11 Y33 *+ Yo3
01
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The integrands of equation (45) must be examined carefully for singu-
larities in the range of integration before evaluation of the integrals
can be performed. No singularities occur over the range of a, but
over the range of B two types of singularities can occur; namely,

branch points and poles. The singularities are contained in the ratios
g'(B,0) and kof(B’O)

kog(B,O) £'(8,0)
real axis, the numerical integration is performed symmetrically about

. In the region where these poles exist on the

each pole so that the integrals of the integrand on either side of the
poles cancel each other; that is, the intergrand is antisymmetrical about
each pole [ii]. The contribution of these poles is obtained by Cauchy's
residue theorem.

For lossy material (Gl/eo complex), the integration of equa-
tion (45) presents no difficulties except at the branch point g =1

2 must be taken into account.

where a proper root change of l -8
However, for nonlossy material (el/eo real), poles exist on the real
p-axis. In the interval between B =1 and B = for € /eg>1,
the integration contributes only to the susceptance in the admittance
expressions. In the range p =0 to B =1, the integration con-
tributes both to the conductance and susceptance. The only other
contribution to the conductance is due to the residues of the simple
poles in the interval 1 < B < el/eo . The conductance as a result

of these simple poles is expressed as lj9]

T remtl i R R —
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where the Bn's are roots of the transcendental equations
)
€ _ .2
& 2 % P
tan kqd - - B~ = = e (TE)
O \IBQ - l
> (b7)
fl BE -1
€ €
tan kyd /G—l- B2 2 e (M)
0 f e
€ J

If the larger dimension b in equation (45) for the dowinant
TEg; mode approaches infinity, the aperture admittance should approach
the admittance of a parallel plate wavegulide covered with a slab of
homogeneous material. This is shown to be the case in the appendix,
both analytically and computationally. The agreement between the two
methods of obtaining the admittance of a parallel plate waveguide

supports the validity of the expression for admittance of a rectangular

aperture.
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CHAPTER III
PYRAMIDAL HORN

Design

The pyramidal horn was designed(a) originally for tests in the
arc-jet test facility at Langley Research Center, Hampton, Virginia.
A detailed drawing of the pyramidal horn is shown in figure 2. For
such tests, the throat aperture of horn was reduced slightly from stan-
dard x-band waveguide dimensions, 0.4 by 0.9 inch to 0.375 by 0.750 inch.
From the throat the horn flares linearly in the E- and H-planes at
angles approximately 8.70 and 9.00, respectively. The overall length
is slightly greater than 6 inches (6.063 in.). This fixes the mouth
size at 1.3 by 1.7 inches, with the larger dimension corresponding to
the H-plane. A plate for the purpose of mounting a ground plane or of
attachment to a spacecraft is provided at the mouth of the horn. The
throat is terminated in a flange for connecting to a waveguide. The

wall thickness is approximately 0.125 inch.

Experiment
A 12- by l2-inch ground plane was attached to the plate at the
mouth of horn. A waveguide-to-waveguide adapter (WR 62 to WR 90) was
connected to the throat flange. This adapter (transition) enabled the
horn to be connected to standard waveguide (RG-52/U). The horn was

then connected to a microwave test setup as shown by the schematic

drawing given in fignre 3.

(‘)M. C. Gilreath of the Langley Research Center designed the

pyramidal horn.
2L
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The following procedure was used in measuring the mouth admittance
of *he pyramidal horn: The mouth of the horn was shorted by clamping a
12- by 12-inch flat ground plane to the ground plane attached to the
horn. The probe in the slotted line was moved along the line until a
minimum reading was obtained on the standing wave indicator. Upon
removing the shorting plate, the probe was moved along the line until
a minimum reading was found. Since the standing wave repeats itself
every half guide wavelength, the guide wavelength is determined by
multiplying the distance between minime by 2. In addition to the guide
wavelength, the distance AD between the minimum with the shorting
plate and the minimum without the shorting plate is needed in determin-
ing the phase of the reflection coefficient. This phase is found by
entering the Smith Chart on the left-hand axis (zero reactance) and
rotating AD/%g around the chart. The phase angle is taken with respect
to the right~hand axis of the Smith Chart. The VSWR of the horn is
determined by calibrating the standing wave indicator on a meximum and
moving the probe along the slotted line until a minimum reading is

obtained. From the VSWR, the magnitude of the reflection coefficient
VSWR - 1

VSWR + 1

The measurements as described in the preceding parasgraph were made

2 is computed; that is, IPI =

over a frequency range of 10.0 to 10.6 GHz in 200 MHz increments. Each
frequency was accurately set by the frequency meter. Measurements were
performed for the horn radiating into free space and into a number of
Plexiglas and quartz dielectric slabs. A total of eight slabs of
different thicknesses were used for Plexiglas; namely, 0.1537, 0.246L,

0.3454, 0.4902, 0.5740, 0.9%22, 0.9868, and 1.2408 cm. Three slab

-
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thicknesses of quartz were used: 0.3175, 0.6350, and 1.2954 cm. To
reduce any reflections that may occur from the surrounding environments,
microwave absorber material was placed around the horn for all measure-
ments. The magnitude and phase of the reflection coefficient for free
space and for Lhe various slab thicknesses are shown in figure 4 for

lexiglas and in figure 5 for quartz over the indicated frequency range.

Calculations

By supplying the parameters a, b, 4, €), and frequency, equa-
tions (44) and (45) are used to compute the admittance of a rectangular
aperture that is fed by a uniform waveguide. For the pyramidal horn
mouth size, the dimensions a and b equal 1.3 and 1.7 inches,
respectively. The thickness d of the material covering the ground
plane and horn mouth was varied over a range of 0.0 to 2.0 em in 0.1 em
increments. The complex dielectric constants were assumed to be
2.55-j.01 for Plexiglas and 3.76-j.01 for quartz. A small loss was
assumed to alleviate the surface wave problems that occur in the inte-
gration when the dielectric constant is lossless [Q]. The frequency
range was the same as the range used in making the measurements, that
is, 10.0 to 10.6 GHz in 200 MHz increments.

Equation (4h) takes into account the contribution of the higher

-(¥12 )2
order mode TEO}' This contribution is the term ——-—lz-—-. For the

Y22 TV
o)

aperture size 1.3 by 1.7 inch, the effect of this tegm on %he admittance

is negligible. This is shown in table I for several frequencies and

several thicknesses of Plexiglas. Therefore, the admittance obtained

by assuming only the TE,;; mode in the aperture is sufficient. Since

R | B ] ———
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(a) Frequency = 10.0 GHz.

Figure 4. - Pyramidal horn reflection coefficient as a function of
slab thickness for Plexiglas.
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(¢) Frequency = 10.4 GHz.

Figure 4. - Continued.
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(d) Frequency = 10.6 GHz.

Figure 4. - Concluded.
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(a) Frequency = 10.0 GHz.
Figure 5. - Pyramidal horn reflection coefficient as a function
of slab thickness for quartz.
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Figure 5. - Continued.
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TABLE I.- NORMALTZED ADMITTANCE CALCULATIONS INCLUDING

HIGHER ORDER MODE FOR PYRAMIDAL HORN

1
Frewend | idimeany | v | gobe— i3 '
cm 33 " 703

10.0 0.5 2.6722+j.1567 0.0020-j.0136 | 2.6Th2+J.143L
10.0 1.0 1.1748+3.0895 | 0.0002-5.0Ck1 1.1750+3.0854
10.0 1.5 2.4002-3. 1443 i 0.0318-3.0122 | 2.432-3.1565
10.2 0.5 2.582%+3.0489 | -.0030-3.0108 2.6798+3.0381
10.2 1.0 1.1624+§.1369 | --0010-3.0035 | 1.161h+3.1334
10.2 1.5 2.3099-3.3059 | 0.0165-3.0275 | 2.3264-3. 3334
10.4 0.5 2.6781-3.0621 | =.0057-3.0102 2.672%=3.0723
10.4 1.0 1.1576+3.1909 | -.0027-3.001b | 1.1549+§.1895
10.6 1.5 2.1739-3.4416 | -.0038-3.0272 2.1701-3.4688
P - —xmm

ey p—— W ——
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the flare aigles of the horn are small ané¢ the wave is assumed to be
plane at the mouth of the horn, the reflection coefficient both magni-
tude end pnase is computed from the normalized admittance by the
relationship

po-_Yep (48)
1+ ya.p

The magnitude and phase of the reflection coefficient are plotted as

a function of slab thicknesses on the same graphs (fig. 4 for Plexiglas
and fig. 5 for quartz) with the measured data. The reflection coeffi-
cient given by equation (48) assumes the flare angles have little
effect on the aperture admittance. The agreement in the data indicates

that this was a valid assumption.

Discussion of Results

C~cd general sgreement was obtained Letween measured and calculated
data for most of the slab samples. The greatest disagreement occurs for
the smallest slab sample of quarts (0.322 cm) as shown in figure 5
ccmparing the magnitudes.

Since for free spacc conc.cions excellent agreement was obtained,
the errors ara caused by the slabs. The inability to cliamp the samples
snugly tc the ground plane and the non-uniformities in the samples will
cause some errors in the measurements. In addition to these sources of
error, the finite edge of the slabs could influence the aperture
admittance (or reflection coefficient) if surface waves are strongly
coup.ed into the slabs. In the theoretical model, the dielectric con-
stants of the slabs were assumed to have & small loss for computational

reasons; that is, to eliminate the problem of computing the surface

NEREIGRX  em e g py e gemes 1 A R BT T Ty s S aumits
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wave conductances. Since the finite edge cf the slabs cause reflections
of these surface waves for the experimental model, these waves must be
considered. For the given 12- by 12-inclk slab sample size, the slab is
not lossy enough to damp out these quasi-surface waves at the finite
edges of slabs. Therefore, the conductance of the aperture admittance
assuming infinite slabs of material was investigated.

The total conductance, the surface wave conductance given by
equations (46) and (47), and the percentage of surface wave conductance
contained in the total conductance ai%given in teble II for the small
quartz slab (0.322 cm) and for the Plexiglas slab (0.345 cm). The
percentage of surface wave conductance is small for both slabs; however,
the percentage for the quartz slab is greater. The greater the surface
wave conductance, the greater the surface wave is coupled into the
slab, and hence, the grzater the effect the outer edge could have on
the aperture admittance (or reflection coefficient). This effect could
be such that it reduces the magnitude of the reflection coefficient.
This could account for some of the error in the quartz slab data shown
in figure 5. The same kind of error was observed for a standard
X-band waveguide (0.4 by 0.9 in.) covered with the same quartz slab
thickness [ij].

To illustrate the effects the slabs have upon the antenna pattern,
E-plane radiation patterns were measured at 10.0 GHz for free space,
for the 0.322 cm quartz slab, ana for the 0.345 cm Plexiglas slab.

These patterns are shown in figures 6 and 7. A greater amount of
ripple is observed in the pattern with the quartz slab cover than in

the pattern with the Plexiglas slab cover. The greater the amountv of
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TABLE II.- CONDUCTANCE CALCULATIONS FOR PYRAMIDAL HORN

Normalized conductance

Frequency, Plexiglas Quartz
GHz
Total Szj:i:ce Percent | Total Suwzfr.:ce Percent
10.0 1.9601 | 0.0972 4.S 3.0949 | 0.3184 10.3
10.2 2.0240 | 0.1231 6.1 | 3.2020|0.3771 11.8
10.4 2.0810 | 0.1508 7.2 3,2970 | 0.4294 13.0
10.6 2.1399 | 0.1792 8.3 3.3814 | 0.4709 13.9
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ripple in the pattern, the greater the trapped energy (li]; hence, the
greater the surface wave.

By fixing the H-plane mouth size (4.318 cm) for varying E-plane
mouth size, computations of the surface wave conductance were made at
10.0 GHz for the two dielectric slabs. A plot of the surface wave
conductance as function of E-plane mouth size is shown in figure 8
for the 0.322 cm quartz slab and the 0.345 cm Plexiglas slab. Similar
graphs for different frequencies and slab thicknesses can be made. By
choosing the proper height of the E-plane dimension for fixed H-plane
width, the surface wave conductance can be kept at a minimum. Perhaps
if the pyramidal horn were designed for minimum surface wave conduc-
tance occurrence, the measured and calculated data would be in better

agreement.
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Figure 8. - Normalized surface wave conductance as a function
of E-plane mouth height at 10.0 GHz.
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CHAPTER IV
H-PLANE HORNS

Design
With reference to sketch given in figure 9, the dominant mode

fields in an H-plane sectoral horn are [2]

, = A cos n¢[Hr(12)(kop) + a}g(ll)(kopﬂ

E =
Hy = EﬂTEEE_EZ[AéE)(kOp) + aHél)(kopil > (49)
JOMRP -

Hy = W&”'M) + aﬂél"“o‘”]

JWMQ

where the primes denote derivatives of the Hankel functions with

respect to kpP and n = 5%— . For computational reasons, the flare
1

angle 2¢ was selected such that n = 5%— is an integer; that is,
computer programs for determining integerlorder Hankel functions are
readily available. Equations (49) were presented here since the order
of the Hankel functions was a design criterion.

For fixed throat and mouth size, two H-plane sectoral horns were
constructed for different flare angles. The throat and mouth size was
0.4 by 0.9 inch (standard x-band size) and 0.4 by 2.46 inches,
respectively. The two flare angles chosen were 18° and 9°. These
flare angles with fixed throat and mouth size fix the lengths of the
horns at 4.937 and 9.911 inches, respectively. Each horn is terminated
in a 12- by 12-inch flat ground plane. X-band flanges are connected
to the throats of the horns. A drawing of the horns is given in

figure 10.
45
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Experiment

The H-plane sectoral horns were connected to 7z microwave test
setup in the same manner as the pyramidal horn in the previous chapter.
However, in this case a waveguide-to-wavegui-ic adapter was not needed
since the throat size was designed at standard x-band waveguide size
(0.4 vy 0.9 in:h).

The procedure used in measuring the reflectior coefficient of the
H-plane horns was the same as the one used for the pyramidal horn
given in the previous chapter. Therefore, a description of the pro-
cedure will not be given here.

The measurements for these horns were performed over a frequency
range of 9.0 to 9.6 GHz in 200 MHz increments. The same slab samples
of Plexiglas and quartz used in the pyramidal horn experiment were
usad in this experiment. The magnitude and phase of the reflection
coefficients for these horns %‘determined from the measured data in
the same manner described in Chapter III. For each frequency, the
reflection coefficient was plctted as a functior. of slab thickness.
These results are shown in figurell for Plexiglas and in figurel2 for

quartz for the twc flare angles of 18° and 9°.

Calculations
The admittance of an H-plane sectoral horn related to the reflec-
tion coefficient is determined from eouation (49); that is, the wave

admittance is defined as [ 1]

Y(kp) = g.ﬂ (50)
z
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50
Using equation (49), equation (W) becomes

)" (kgp) + o-nnl"%pﬂ
[Hr(:?)(kop) + aﬂr(ll)(kop)}
51

Dividing equation (fill) by the characteristic admittance of the sectoral

}ifl (

¥(kP) = =¥, (51)

horn

Hé2)'(kop)

Y (ko) = 3Y (52)
¢ 0 0 Hég)(kop)
the normalized wave admittance is written as
Ykp) B (kgp) l_”r(xg)'(kop) + ot (el (53)
The reflection coefficient in the sectoral horn is defined as
(:) (koo )
Py = o O (54)
th (kop)
54 §3 53
Substituting ecuation (W) iuto (WR) for a, equation (JB) becomes
Lar #(2) (k) . B ko)
Y(koo)  _ s " B (kgp) B2 (kep) (55)
Y, (kgp) 14T
8
and solving for I‘8
Y
l + ?c-
12 (k) 1) (kep)

o wMe) ) (i)
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LIST OF SYMBOLS

short dimension of waveguide

long dimension of waveguide

thickness of slab

electric field intensity

amplitude of incident wave

normalized Fourier transforms of vector potential

surface-wave conductance where n refers to
specific poles

magnetic field intensity

reaction integral

wave number in free space, o \leTuo

Cartesian components of wave number

wave numbers (defined in eqs. (2))

wave number in region II

wave number in region III

amplitude of TEO} mode

time

Cartesian coordinates

characteristic admittance of free space

characteristic admittance of the TE; and 303
modes, respectively, in region I (defined in eqs. (2))

aperture admittance

normalized value of Yoy io}-

Yo1
normelized aperture admittance

ix
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For 18o and 9° flare angles, the orders of the Hankel functions are

10 and 20, respectively. At the mouth of these horns, the ratio

(2) (1)
Hy~ (koPo) . EE__T£59222 is approximately equal to -1 for n = 10
(D kge,) B2 (k)
27 X 39.950

with koo, = 2xn ")\19'975 and for n =20 with kg, = A

over a frequency of 8.4 to 10.0 GHz.

Therefore, equation (54%) becomes

14 Y(kopz)
Yo (kgpp) (57)

1 - Y (ko)
Yc(kope)

I‘s(kop2) =

If the admittance were known at the mouth (p = 02), the reflection

coefficient could be determined at this point from equation (56). The

admittance at this point is assumed to be approximated by the admittance

obtained from equations (4k4) and (45). Substituting the admittance

(YOlyll) obtained from equation (45) for the admittance Y(kopz) in

equation (57), the reflection coefficient becomes

2 (2)
*d (kob aner——(kopg) 11 8)

' =
8 5 2)
l_le_(n> B{2) (kgpo) .

ko°/ 1) (k p,)

where the characteristic admittance given by equation (52) has been

substituted. For the two H-plane horns considered, the term

b8

2 (2)( 05)

\/1 - (k“b) Hn2 'ko 2 is approximately equal to e 2 . Therefore,
0"/ 1) (xgp)

equation (58) with y,; = Vap becomes
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l-
r = Jap (59)
s l+y
ap

By supplying the parameters a, b, d, €;, and frequency and
selecting the aperture size to be the same as the H-plane horn mouth
size (a = 0.4 inch and b = 2.46 inches), the admittance Yap = Y11
was determined using equation (45) for a frequency range of 9.0 to
9.6 GHz in 200 MHz increments. These computations were made for free-
space conditions (d = O) and for Plexiglas covers (€; = 2.55-j.01)
and quartz covers of varying thickness 4 (0.1 to 2.0 cm in 0.1 cm
increments). Here again, small losses were assumed to alleviate the
surface wave problems that occur in the integration when the dielectric
constant is lossless.

As before, the contributions due to the higher order mode (TEOB)
are negligible for the chosen aperture size. This is shown for
several slab thicknesses of Plexiglas in table III. Therefore, the
admittance obtained by assuming the TEp; mode in the aperture is
sufficient; and hence, the aperture adnittance y&p is equal to ¥q79
given by equation (45).

The reflection coefficient for both H-plane horns is determined
from equation (59) and equation (45). The magnitude and phase of the
reflection coefficient are plotted as a function of slab thickness on

the same graph with the measured data. These plots are shown in

figures 11 and 12 for Plexiglas and quartz, respectively.
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TABLE III.- NORMALIZED ADMITTANCE CALCULATIONS INCLUDING

HIGHER ORDER MODE FOR H-PLANE HORN

Frequency, tiii’céiiif vt __z_yi;yi j@ Vap
8.4 0.5 2.1530+j.1.1086]0.00050-j.00070 |2.153+j.1.1079
8.4 1.0 1.5356+j.2477 |+.0008+j.00009 [1.536L+j.2T45
8.4 1.5 1.5863+3j.9128 |-.00030+j.00070 j1.5860+j.9135
8.6 0.5 2.2144+3.1.467 ]0.00030-3.00050 |2.2147+j1. 0462
8.6 1.0 1.5147+5.2773 |-.00002-3.00009 {1.5147+j.2772
8.6 1.5 1.6677+3.9173 |0.00007+j.00049 |1.6678+3.9178
8.8 0.5 2.2717+3.9794  10.00008-j.00059 [2.2718+3.9788
8.8 1.0 1.4931+j.2824  |-.00004+j.00009 |1.4930+j.2825
8.8 1.5 1.7588+j.9029 |-.00032-3.00073 [1.7585+3.9022
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Figure 11. - H-plane sectoral horn reflection coefficient as a function

of slab thickness for Plexiglas.
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Discussion of Results

The assumption made in regard to the wave front incident on the
aperture will cause some error in the calculated results; that is, the
wave is actually a cylindrical wave rather than e plane wave. Most of
the reflection for the H-plane horns occur at the mouth for small flare
angles; therefore, the reflections at the throat are small compared to
the reflections at the mouth(a‘) [l_]

Excellent agreement was obtained between the measured and calculated
data for free-space conditions. However, for slab covers, the magnitude
of the reflection coefficient for the measured data is consistently
i below the calculated data. As in the pyramidal horn experiment, the
inability to clamp the samples snugly to the ground plane and the non-

uniformities in the slab samples will cause some error in the measur.-

: .
2t A cefa G .

ments. The surface waves trapped in the finite slabs could cause errors
- in the aperture admittance as discussed in the previous chapter. Using
{
; the equations for surface wave conductance (eqs. (46) and (47)), the
M
; g} surface wave conductance is computed and shown in table IV along with
uéz the total conductance and percentage of surface wave conductance con-
: 2' tained in the total conductance for the same two slab samples. The
; percentage of surface wave conductance for both Plexiglas and quartz is
mach greater for the H-plane horn than for the pyramidal horn; hence,
the edges of the finite slabs could have a greater effect on the aperture
admittance for the H-plane horn. The surface wave conductance is greater
: for the quartz slab then for the Plexiglas slab. The data shows that

(2)pgscussion with P. Pathak of the Ohio State University concerning
the reflections at the throat verify the fact that these reflections are

small for both horns.
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TABLE IV.- CONDUCTANCE CALCULATIONS FOR H-PLANE HORN

Normalized conductance

Fre %;ency ’ Plexiglas Quartz
z
Total S\;:i:ce Percent | Total ﬁ‘i;:ce Percent
9.0 1.7333 [0.7554 | 43.6 |2.6525]1.3358 | 50.3
9.2 1.7884 | 0.7795 43.5 2.7512 | 1.3879 50.4
9.4 1.8429 | 0.8024 43,5 2.8u82 | 1.4365 50.4
9.6 1.8950 | 0.8245 43.5 2.9421 | 1.4807 50. 3%




63
better agreement is obtained in the Plexiglas case. Therefore, the
data indicates that the greater the surface wave conductance, the greater
the disagreement.

The E-plane radiation patterns were measured at 9.0 GHz for free
space for the 0.322 cm quartz slab and for the 0.345 cm Plexiglas slab.
These patterns are shown in figures 13 and 14. The ripple observed in
this case for both slabs is greater than the ripple observed in the
pyramidal case; hence, the greater the trapped energy [1?]. The greater
the trapped energy, the more strongly the surface wave is coupled into
the slab. The ripple for the quartz slab is greater than the ripple for
the Plexiglas slab; therefore, the surface wave is greater for the quartz
slab than for the Plexiglas slab. This is in agreement with the results
determined from the surface wave conductance computations.

By fixing the H-plane mouth size (6.248 cm) for varying E-plane
mouth size, computations of the surface wave conductance were made at
9.0 GHz for the two dielectric slabs. A plot of the surface wave con-
ductance as a function of E-plane mouth size is shown in figure 15 for
the 0.322 cm quartz slab and for 0.345 cm Plexiglas slab. Similar graphs
for different frequencies and thicknesses can be made. As in the pyra-
midal horn case, the height can be chosen such +hat the surface wave
conductance is kept at a minimum. One must keep in mind that whatever
E-plane height is chosen, the feeding waveguide height must be the same
in order for the horn to be an H-plane horn.

Theoretically, as the flare angle approaches zero with fixed mouth
size, the H-plane sectoral horn would approach a uniform waveguide of

mouth size cross section; and hence, the aperture admittance would be
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Figure 15. - E-plane radiation pattern at 9.0 GHz for free space

and 322 cm quartz slab.
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determined by equation (45). Therefore, the measured reflection coeffi-
cient for the smaller flare angle horn (90) should be closer to the
theoretical results. This is the case for most conditions, especially
in comparing the magnitudes of the reflection coefficients for the two

flare angles in figures 11 and 12.
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CHAPTER V
CONCIUDING REMARKS

Variastional expressions of the admittance of a uniformly fed
rectangular aperture covered with homogeneous material are derived.

The electric field inside the waveguide is assumed to be a dominant
mode (TEOl) plus the first higher order symmetrical mode (TEOB)' For
the aperture sizes of the pyramidal and H-plane horns, the contribution
of the TE03 mode to the aperture admittance is shown to be negligible.
Hence, the aperture admittance calculated using TEOl mode only is
adequate.

Assuming the admittance of a uniformly fed rectangular aperture
to approximate the mouth admittance of the pyramidal and H-plane horns,
good sgreement between measured and calculated data for free-space
conditions was obtained for all horns. Therefore, it is concluded that
internal reflections and construction tolerances do not affect the
measurements appreciably.

Good agreement in terms of reflection coefficients was obtained
between the measured and calculated data for the pyramidal horn,
particularly for the Plexiglas slabs. The major disagreement for the
quartz slab data is attributed to the amount of surface wave conductance
contributed to the total conductance of the aperture admittance. This
contribution was small for both slab samples, but the contribution for
the quartz slab was greater than the Plexiglas slab. Hence, the edges
of the finite slabs are more strongly excited, thus possibly influencing

the aperture admittance.
68
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For the H-plane horns, the reflection coefficients at the mouth of
the horns are shown to be approximately equal to -:lL—_:—:—:Q‘R where Yap
is the normalized mouth admittance for uniformly fed angtures. The
agreement between measured and calculated reflection coefficients for the
H-plane horn is not as good as the agreement obtained for the pyramidal
horn. However, this is in theory attributed to the flare angle and to
the effect due to surface waves. The smaller flare angle (9°) horn data
agreed better with the calculations than the larger flare angle (18°)
horn data, particularly for the magnitudes.

The amount of surface wave conductance for both slab samples con-
tributed to the total conductance of the aperture admittance for the
H-plane horn is much greater than the contribution for the pyramidal
horn. Therefore, the edges of the finite slabs could have a greater
influence on the aperture admittance. This influence could be such that
the reflections at the aperture are reduced. The data indicates that
this is the case.

The assumption made in regard to the mouth admittance in computing
the reflection coefficients for both the pyramidal and H-plane horns
will cause some errors in the calculated data. In addition to this
error and the errors that could be caused by the trapped surface waves,
the inability to clamp the sample snugly to the ground plane and the
non-uniformities in the slab samples will also cause errors in the

measurements.

As the larger dimension in the expression for the admittance of a
uniformly fed rectangular aperture approaches infinity, the aperture
admittance is shown to approach the admittance of a parallel plate
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waveguide covered with a slab of homogeneous material. This is shown
both analytically and computationally (for free-space condition) for
the dominant mode. The agreement between the two methods of obtaining
the admittance of a parallel plate waveguide supports the validity of

the expression for the admittance of a rectangular aperture.



LR VTR

Ly 3-,-.‘,‘ e

f&ﬁ!:ﬂ%&qﬂ_»wa&,mqs .o

1.

10.

1l.

LIST OF REFERENCES

Risser, J. R.: Waveguide and Horn Feeds. Microwave Antenna
Theory and Design, Samuel Silver, ed., Dover Publication, Inc.,

1965.
Wolff, E. A.: Antenna Analysis. John Wiley and Sons, Inc., 1967.

Compton, R. T., Jr.: The Admittance of Aperture Antennas
Radiating Into Lossy Media. Rep. 1691-5 (NASA Grant No. NsG-448),
Antenna Lab., Ohio State University Research Foundation,

March 15, 196k.

Villeneuve, A. T.: Admittance of Waveguide Radiating Into Plasma
Environment. IEEE Trans. Antennas and Propagation, vol. AP-13,

no. l, Jarlo 1965, ppn 115'121-

Swift, Calvin T.: Input Admittance of & Rectangular Waveguide-Fed
Aperture Antenna Radiating Into an Inhomogeneous Lossy Dielectric

Slab. NASA TN D-4197, 1967.

Galejs, Janis: Admittance of a Waveguide Radiating Into Stratified
Plasma. IEEF Trans. Antennas and Propagation, vol. AP-13%, no. 1,

Jan. 1965, pp. 64-70.

Galejs, Janis: Slot Antenna Impedance for Plasma Layers. IEEE
Trans. Antennas and Propagation, vol. AP-12, no. 6, Nov. 1964,

p. T38-T45.

Galejs, Janis; and Mentzonic, Michael H.: Wavegulide Admittance
for Radiation Into Plasma Layers - Theory and Experiment. IEEE
Trans. Antennas and Propagation, vol. AP-15, no. 3, May 1967,

Pp. 465-470.

Cockrell, C. R.: Higher-Order-Mode Effects on the Aperture
Admittance of a Rectangular Wavegulde Covered With Dielectric
and Plasma Slabs. NASA TN D-4774, 1968.

Croswell, wWilliam F.; Taylor, William C.; Swift, C. T.; and
Cockrell, Capers R.: The Input Admittance of a Rectangular

Wavegulde-Fed Aperture Under an Inhomogeneous Plasma: Theory
and Experiment. IEEE Trans. An‘ennas and Propagation, vol. AP-16,

no. 4, July 1968, pp. L75-487.

Harrington, Roger F.: Time-Harmonic Electromagnetic Fields.
McGraw~Hill Book Company, 1961.

71



T2

12. Swift, C. T.; and Hatcher, D. M.: The Input Admittance -f a
Rectangular Aperture Antenna Loaded With a Dielectric rlug.

NASA TN D-4430, 1968.

13. Croswell, William F.; Rudduck, Roger C.; and Hatcher, Douglas M.:
The 4dmittance of a Rectangular Waveguide Radiating Into a
Dielectric Slab. IEEE Trans. Antennas and Propagation, vol. AP-15,

no. 5, &pto 1967, pp- 627"6330

14. Jones, J. Earl: The Influence of Air-Gap Tolerances on the
Admittance of a Dielectric-Coated Slot Antenna. L.EE Trans.

Antennas and Propagation, vol. AP-17. no. 1, Jan. 1969.
Radiation From an Aperture

15. Knop, Charles M.; and Cohn, George S.:
in a Coated Plane. Radio Sciencc vol. 680, no. 4, April 196h4.

feoc T gas

e oo

g U 2 PN



APPENDIX

The admittance of a rectangular aperture assuming the dominant

TEgy mode is given by the first equation in equation (45) of the text

as
- - s 2¥oko” Co (e ) (1 )Gy (1 )y (1)
Y]_l y]__]_YOJ_ a.b(2 » )2 j f kx2 + kyz
_ Ei)a g'(0) <kx> 1/kof( O)) N
" <ko <kog(o) &) D\ (a-2)
where
. a .
8./2 . 2 sin -—5—
CO(ISC) =L/-a/2 ekaxd.x = kx
; c.(k ) _k/*b/E cos XX Jkyydy
1Y J )
Jg:
:
: I I > (a-2)
5 g'(0) k'l sin kM - gk, TIT cos kyMa
b g(0) ITI
¢ cos kzIId + i sin kzIId
1 II
2
II € kzIII I
£(0) _COSKZ a 33'51:211 sin kzd
£'(0)
k, T sin x,11d - 3 ; cos k,1a )
0

T3
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Th
Determine what happens to the admittance expression given by equa-
tion (A-1) when the large dimension b approaches infinity. Under

this condition, equation (A-1) becomes

lim Yll= lim -
b o b oo a.b(21t)

2Yoko f f“ Co (ke )Co (K )Cy (K, )Cy (k)
ke + kP

2/ (0)\ . (K2 €1/K0f(0)
" Gﬁ) (k08(0)>+(’—‘5> ?-S(kf'(m) oty (43

or
) 2Yoko ® Colky)Co(kx)| . Cl(ky)cl(kyj
bl_i:nm Yap = a.){(21t)2 -oo‘-/ kx + ky2 bl~l+m°° b
(e . () afee)
g (k > (koS(O) +(ko o\ (0) /| Ty ()

The limit term of equation (A-4) by using the second equation of (A-2)

is written as

L N T
b

b-*°° b—mb -b/2

b/2
f / cos XX e‘jkyy dy \ (A~5)

-b/2 b
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o C ®
1im 10y )¢y (ky) = lim 2 f cos X e'jk'yy dy (A-5)
D o b b-»ob J o b * (

j cos -’% e'jkyy dy

where the two integrals are recognized as Fourier transforms of cos -“%
Since the product of Fourier transforms equals the Fourier transform of
the convolution of their inverse transforms, equation (A-5) is written

as

o C1 (ky )Cp (ky) ;{:08 Yy cos .’EY_} )
b = bowP* b
(\ (a-6)
blimw Cl(ﬁgcl(ky) b.—.-)oo bJ{j cos -l cos -(y - T)d }
And hence,
Cy (ky )Gy (k)
_Dli_-:nm k‘vb = n5(ky) (A7)

where 6(1%) is the Dirac delta function.

Substituting equation (A-7) into (A-k4),

i i 2Yoko? [ * nd(ky)
Yopp = Mm Y = -3 NERIL co(k")co(kx)/ky=-m ———15—5kxe .

R - s o
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or
Y C C
@ 3 e Jy L O O‘ka() ity
(A-9)
and from equation (A-2)
B €1 x, ITT -
. a IT II
Yapp = 7= \/; 2 % dley
3k, sin kT8 + E’ k, 11T cos k,IIa
0
(A-10)
Dividing both numerator and denominator by cos kzIId
- III ]
k
o Kya €1
4 /“ si0% 5 lwey [* J—TW‘ k,1d
Y = e
S I P P L Ty
Z__ +j tan k114
| eo k II . _
(A-11)

Equation (A-11) gives the aperture admittance of a parallel-plate

waveguide. With a notational change of €, = €, €5 = €

II III
kZ

o)
= kz,l’ and k, = kz,2’ equation (A-11) is identical to the
equation given by Jones [ié].

The admittance of a rectangular aperture is also shown numerically
to approach the admittance of a parallel-plate waveguide with zero
thickness of material (free-space condition). The admittance for

a = 1.016 cm and frequency of 8.9 GHz is calculated using equation (A-l)
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for increasing values of b under free-space conditions. These results

are compared in table A to the result obtained from the parallel-plate

solution given by Jones.
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TABLE A.~- PARALLEL PLATE ADMITTANCE CALCULATIONS

= 8.9 GHz Value obtained from Jones'
= 1.016 cm Calculation = 0.8177+j.5035
Dimension b, Admittance
cm normalized
2.286 0.7935+j.4058
3,286 . 7618+ . 4784
4.286 <TT94+3. 4957
5.286 .8059+3.4997
6.248 .8020+j.5010
6.348 .8024+3.5011
8.000 .8086+3.501k
9.000 .8109+j.5011
10.000 .8126+j.5009
11.000 .8139+j.5001
16.000 .8171+j.5002
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